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Infinite-time concentration in Aggregation-Diffusion
equations with a given potential
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Abstract

Typically, aggregation-diffusion is modeled by parabolic equations that combine linear or non-
linear diffusion with a Fokker-Planck convection term. Under very general suitable assumptions,
we prove that radial solutions of the evolution process converge asymptotically in time towards
a stationary state representing the balance between the two effects. Our parabolic system is the
gradient flow of an energy functional, and in fact we show that the stationary states are minimiz-
ers of a relaxed energy. Here, we study radial solutions of an aggregation-diffusion model that
combines nonlinear fast diffusion with a convection term driven by the gradient of a potential,
both in balls and the whole space. We show that, depending on the exponent of fast diffusion and
the potential, the steady state is given by the sum of an explicit integrable function, plus a Dirac
delta at the origin containing the rest of the mass of the initial datum. Furthermore, it is a global
minimizer of the relaxed energy. This splitting phenomenon is an uncommon example of blow-up
in infinite time.
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1 Introduction

Enormous work has been devoted over the last years to the study of mathematical models for
Aggregation-Diffusion that are formulated in terms of semilinear parabolic equations combining
linear or non-linear diffusion with a Fokker-Planck convection term coming either from a given po-
tential or from an interaction potential, see [3, 24, 36, 18, 21, 27, 19] and the references therein,
and the books [2, 46]. In this paper we consider the aggregation-diffusion equation

% =Ap" + V- (pVV), in (0,00) x R" (P)

where the potential V(z) is given and 0 < m < 1, the fast-diffusion range [44]. We take as initial
data a probability measure, i.e.,

po >0, / podx = 1. (1.1
We will find conditions on the radial initial data py and the radial potential V so that

i) we provide a suitable notion of solution of the Cauchy problem defined globally in time passing
through the mass (or distribution) function,
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ii) ast — oo, the solution undergoes one-point blow-up of the split form

p(t) — Moo = Poo T (1 - HpOO”Ll(]R"))(SO’

where p..(xz) > 0 is an explicit stationary solution of (P). The presence of the concentrated
point measure is a striking fact that needs detailed understanding and is the main motivation
of this work. Here and after we identify an L* function with the absolutely continuous measure
it generates.

It is known that Dirac measures are invariant by the semigroup of fast-diffusion equation u; = Au™
for0<m < % (see [10]), but they are never produced from L' initial data. Here we show that the
aggregation caused by the potential term might be strong enough to overcome the fast-diffusion
term and produce a Dirac-delta concentration at 0 as ¢t — oc.

The case of (P) with slow diffusion m > 1 was studied in [18, 32], where the authors show that
the steady state does not contain a Dirac delta (i.e. ||pwollz: = 1). The linear diffusion case was
extensively studied in [3, 36, 39]. The fast diffusion range 1 > m > "7*2 with quadratic confinement
potential is also well-known and their long-time asymptotics, even for Dirac initial data, is given by
integrable stationary solutions, see for instance [9] and its references. See also [45] for the evolution
of point singularities in bounded domains.

We will take advantage of the formal interpretation of (P) as the 2-Wasserstein flow [18, 21, 2]
associated to the free-energy

Flo)=-L5 | p(z)"d= —|—/ V(z)p(z) dz, (1.2)
Rn n

in order to obtain properties of this functional in terms of the Calculus of Variations. We also take

advantage of this structure to obtain a priori estimates p solution of (P) due to the dissipation of

the energy.

Main assumptions and discussion of the main results. We introduce the specific context in
which point-mass concentration arises. We first examine the special stationary solutions that play
arole in the asymptotics:

pvn(z) = (Z2(V(2) + b)) == for z € R", (1.3)
for h > 0. It is easy to check that they are solutions of (P), and they are bounded if h > 0. We
now consider the class of suitable potentials. We first assume that V has a minimum at z = 0 and
is smooth: V € WifO(R"), V >0, V(0) = 0. We are interested in radial aggregating potentials,
in fact we V is radially symmetric and non-decreasing. An essential assumption in the proof of
formation of a point-mass concentration is the following small-mass condition for the admissible
steady states:

ay z/ pv(x)de < 1. (1.4)

As a simplifying assumption we will assume that

/ P e () do < +o0, for some e > 0. (1.5)
B1

The bounded case in which py i, < po < pyin, With by, he > 0 was studied in [14] and leads
to no concentration. On the contrary, we will show that there exists a class of radial initial data
po(z) > pv(x) such that the corresponding solution converges as t — oo to the split measure

too = (1 —ay)do + pv (), (1.6)

in the sense of mass (which will be made precise below). Moreover, under further assumptions on
V, we show that u is the global minimizer in the space of measures of the relaxation of F.



An important motivation for our paper is the current interest in the following model of aggregation
diffusion with interaction potential

0

a—f:Apm-l—V-(pVW*p) (1.7)
that has led to the discovery of some highly interesting features that have consequences for the
parabolic theory and the the Calculus of Variations. Recent results [20] show that, under some
conditions on W the energy minimizer of the corresponding energy functional is likewise split as

froo = (1 = [|poollz1(®n))d0 + Poo-

The presence of the concentrated point measure is known for specific choices of W, see [16]. To the
best of our knowledge, there exist no results in the literature showing that solutions of the parabolic
problem actually converge to these minimisers with a Dirac delta.

It was shown in [7] that for very fast diffusion, m < ”r—f then the solutions of the Fast Diffusion
Equation u; = Au™ with ug € L'(R™) N L*(R") vanish in finite time, i.e. u(t,z) = 0 for ¢t > T*.
When ay < 1, we construct explicit initial data that preserve the total mass, and this holds for any
m € (0,1).

The case of a ball of radius 2 We have a more complete overall picture when we focus on the
problem posed in a ball Bg, adding a no-flux condition on the boundary:

0 .
375 =Ap" +V-(pVVg) in(0,00) x Bg,
(me + PVVR) T = 0) on (Oa OO) X aBR’ (PR)

p(0,2) = po(x).
As a convenient assumption, we require that Vi does not produce flux across the boundary
VVR(I) -x =0, on 0Bpg. (1.8)

We discuss this assumption on Remark 2.12. This problem is the 2-Wasserstein flow of the free
energy

Frlp) = == p(x)™ dz +/ Vr(z)p(z) da. (1.9)
Bgr Br

For (Pgr), we show that Fg is bounded below and sequences of non-negative functions of fixed
ol 1 (Br) = m converge weakly in the sense of measures to

PVi+h if there exists h > 0 such that ||pv,4all21(Br) = M,

Hoo,m,R = .
pve + M = [lpvatnllzisry)do i lpvellisg) < m.

This means that, if the mass a, gz cannot be reached in the class pv, ., the remaining mass is com-

plete with a Dirac delta at 0. Notice that the mass of py,, 1, is decreasing with h, so the largest mass
is that of py,,.

We construct an L!-contraction semigroup of solutions Sy of solutions of (Pg) such that, if py,, <
po € L'(Bg) and radially symmetric, then

FrlSr(t)po] \« Frlttoo,m 7] = Frlova,

wherem = ||pol|z1(B,) and Fristhe relaxation of Fx to the space of measures presented below (see
[25]) . The semigroup S is constructed as the limit of the semigroup of the regularised problems
written below as (Ps ). Then, we recover our results by passing to the limitin ® and R.



The mass function. One of the main tools in this paper will be the study of the so-called mass
variable, which can be applied under the assumption of radial solutions. It works as follows. First,
we introduce the spatial volume variable v = |x|™|B;| and consider the mass function

Mu(t,v):/ép(t,x)dm, Ev:(lg—lQWBl (1.10)

Notice that | B,| = v. For convenience we define R, = R"|B;|. We will prove that M satisfies the
following nonlinear diffusion-convection equation in the viscosity sense

OM s [0 [(0M\"] oMoV
ﬁ—(nwnv ) {81} {(81}) ]+ ov 81}}’ (M)

where w,, = |B;|. The diffusion term of this equation is of p-Laplacian type, where p = m + 1. The
weight will not be problematic when v > 0, as we show in Appendix A using the parabolic theory in
DiBenedetto's book [26].

Notice that the formation of a Dirac delta at 0 is equivalent to the loss of the Dirichlet boundary
condition M (¢,0) = 0. Few results of loss of the Dirichlet boundary condition are known in the lit-
erature of parabolic equation. For equations of the type u; = uy, + |u.|?, it is known (see, e.g., [4])
that u, may blow up on the boundary in finite or infinite time, depending on the choice of bound-
ary conditions. The case of infinite time blow-up was revisited in [43]. The question of boundary
discontinuity in finite time, loss of boundary condition, for the so-called viscous Hamilton-Jacobi
equations is studied in [6, 40, 41, 38] and does not bear a direct relation with our results. A general
reference for boundary blow-up can be found in the book [42].

Precise statement of results. In order to approximate the problem in R”, our choice of Vg will
be of the form
=V(z) |z|<R-e¢
Vr(2)
<V(zr) R—e<|z|<R

and with the condition Vz - = = 0 on 9Bgr. We also define

ay,R = / PVg dx and ag,R = / Lo dx.
Br Br

We will denote V = V3 until Section 7.

Theorem 1.1 (Infinite-time concentration of solutions of (Pr)). Assume V € W?2°°(Bg) is radially
symmetric, strictly increasing, V> 0, V(0) = 0, V - = = 0 on 9Bg and the technical assumption (1.5).
Assume also that ag,r > av,r, po radially symmetric, po > pyv and py € L>°(Bg \ B,,) for some r; < R.
Then, the solution p of (Pg) constructed in Theorem 3.6 satisfies

lim inf/ p(t,x)dx > (ao.r — av,R) —|—/ pv () dz, Vr € [0, R].
B,

t—o00 B,

(i.e., there is concentration in infinite time). Moreover, if

/ po(z)de < (aO’R—av,R)—&—/ pv(z)dz Vr € [0, R], (1.11)
B, By

then for pis . r = (ao,r — av,r)d0 + pv We have that
tgr& dy (p(t)a ;uoo,R) =0,

where d, denotes the 1-Wasserstein distance.

Remark 1.2. If we a non-radial datum py > po » With p - radially symmetric satisfying the hypoth-
esis of Theorem 1.1, then the corresponding solution p(t, z) of (Pgr) constructed in Theorem 3.6
concentrates in infinite time as well, due to the comparison principle.
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Through approximation as R — oo, we will also show that

Corollary 1.3 (At least infinite-time concentration of solutions of (P)). Under the hypothesis of Theo-
rem 1.1 and suitable hypothesis on the initial data (specified in Section 7.1), we can show the existence
of viscosity solutions of (M) in (0,00) x (0,00) (obtained as a limit of the problems in Bg), such that

lim M(t,v) = (1 —ay)+ M,, (v)

t—o0

forallv > 0 and, furthermore, locally uniformly (0, o0). We also have that

Jlim i (p(t), (1 = av)do + py) = 0.

Through our construction of M, we cannot guarantee in general that M(¢,0) = 0 for ¢ finite. Pro-
ducing a priori estimates, we can ensure this in some cases.

Theorem 1.4 (Infinite-time concentration for V quadratic at 0). Let py € L} (R™) non-increasing and
assume oV

or

Then, the viscosity mass solution constructed in Proposition 7.1 does not concentrate in finite time, i.e.
M(t,0) = 0.

(s) < Cyr, in Bgr,, for some Cy > 0. (1.12)

The picture for power-like V. Let us discuss the case where V is of the form

Ao
T | K1,
V(z) ~ { | ||

a2 > L.

The condition V ¢ WQ"X’(R”) means )y > 2. In this setting, we satisfy (1.12) so concentration does

loc

not happen in finite time. The condition py € L}(R") (i.e. ay < oo) holds if and only if

nf)\oo< n— Ag

m < . (1.13)
n

In fact, under this condition, py € L'™¢(R"). In addition to the behaviour at 0 and oo, the restriction
ay < 1is a condition on the intermediate profile of V. This is sufficient to construct initial data pg
(of the shape pp present below) so that solutions converge to . ast — oo, in the sense of mass.
Due to (1.12), the concentration is precisely at infinite time. But we do not know that u., is a global
minimiser of F. In Remark 7.8 we prove that the energy functional is bounded below whenever

n H n—>Aoo n H
m > —5—. Notice that #=2= < __5—. Therefore, i

n n—A\
<m< 9 and  ay <1,
7+ Moo n

then p. is the global minimiser in P(R™) of the relaxation of F and it is an attractor for some initial
data.

Structure of the paper. In Section 2 we write the theory in By for a regularised problem where
the fast-diffusion is replaced by a smooth elliptic non-linearity ®. In Section 3 we construct solutions
of (Pg), by passing to the limit as ®(s) — s™ the solutions of Section 2. In Section 4 we show that
mass functions M of the solutions of Sections 2 and 3 are solutions in a suitable sense of Problem
(M), and we prove regularity and a priori estimates. In Section 5 we construct initial data p, so that
the mass M is non-decreasing in time as well a space. We show that these solutions M concentrate
in the limit, a main goal of the paper. We recall that this means the formation of a jump atv = 0
for t = co. Section 6 is dedicated to the minimisation of Fg for functions defined in Bg. We prove
that the minimisers are precisely of the form pi.. m,r described above. In Section 7, we pass to the
limit as R — oo in terms of the mass. We show that the mass functions for suitable initial data



still concentrate. We discuss minimisation of the function F. We show the class of potentials V
that make F bounded below is more restrictive than for Fg, and provide suitable assumptions so
that u., is @ minimiser. We list some comments and open problems in Section 8. We conclude
the paper with two appendixes. The first, Appendix A recalls results from [26] and compacts them
into a form we use for M. Appendix B is devoted to mixing partial space and time regularities into
Holder regularity in space and time.

2 The regularised equationin By

Following the theory of non-linear diffusion, we consider in general

% =A®(u) + V- (uE) in(0,00) x Bg
(VO(u) +ul) -z =0, on(0,00) x IBR, (Pa,r)

(0, 2) = up(x).

We assume that @ € C* and elliptic we think of the problem as

% =A®(u) +Vu-E+uV-E.
Furthermore, we assume
E(x)-xz=0, on 0Bg 2.1

Remark 2.1. Our results work in a general bounded domain ©, where the assumption on E'is that
E-n(x) = 0on 9. However, we write them in a ball of radius R since our main objective is to study
the long-time asymptotics of radially symmetric solutions.

The diffusion corresponds to the flux a(u, Vu) = ®'(u)Vu. When @, E are smooth and we assume
® is uniformly elliptic, in the sense that there exist constants such that

0<ecp <P (u) <y < oo, (2.2)

existence, uniqueness, and maximum principle hold from the classical theory. The literature is ex-
tensive: in R™ this issue was solved at the beginning of the twentieth century (see [33]), in a bounded
domain with Dirichlet boundary condition the result can be found in [29], and the case of Neumann
boundary conditions was studied by the end of the the twentieth century (for example [1]), where
the assumptions on the lower order term were later generalised (see, e.g. [47]). Following [1], we
have that, if uy € C?(Bg) then the solution u of (P4 z) is such that

we O ((O,T); C(FR)) N c((o, o) 02(37)) N c([o, 0) X ?R). (2.3)
Let us obtain further properties of the solution of (Pg g).
Theorem 2.2 (I? estimates). Assume E(x) - n(x) > 0. For classical solutions we have that
lu(t)ellzr < el 2120l (ug) ]| o (2.4)

Proof. Let j be convex. We compute

d j(u) = i (u)V - u) +ul) = — i (u)Vu u) +u
0= [ Jwv- @ su = [ @vue b

_ /BRj”(u)q)'(u)|Vu|2 7/‘ i(WuVu - E < 7/' VF()-E

Br Br
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/BRVF(U).E/BRV.(F(U)E)/BRF(u)V.E/BBRF(U)E.xl/BRF(U)V,E

Finally, we recover

/BRj(u(t)) </BRj(u0)+/0t/BR Fu)V - E.

When j(s) = s, 5" (s) = p(p — 1)s% > we have F(s) = ps".. Applying (1.8) we show that

t
/ u(t)l, < / (uo). + ||V - Bl / / .
Br Br 0 JBr

By Gronwall's inequality we have that

[ uten <etv B [ gy,
BR BR

Taking the power 1/p we have (2.4) for p < oo and letting p — oo we also obtain the L> estimate. O

Theorem 2.3 (Estimates on V& (u)). We have that

T 2 T
2 % 24z d 5
/0 /BR'W(“)' S/BR\I'(uo)+ ) / /BRu@,z) v dt. 2.5)

Proof. Multiplying by ®(u) and integrating

/BR u®(u) = — - Vo (u)(Vo(u) + ub) = _/

[ e - /B Ve

Letting
\Il(s):/ ®(0)do,
0

we have
d

G [ v [ IVeP < [u®)e Vo) 1Bl -
BR BR
Applying Young's inequality we obtain

d 1 1
— [ v - O(u))? < < lu@®)|2:]| B3 -
T ARCRE Y LGOI PO

Notice since &’ > 0 we have that ¥ > 0. Hence, we deduce the result. O

If ®(ug) € L' and ug € L? then the right-hand side is finite due to (2.4).

Remark 2.4. When &(s) = s™ then W(s) = —Lgs™*".

In order to get point-wise convergence, we follow the approach for the Fast Diffusion equation
proposed in [44, Lemma 5.9]. Define

Z(s) = /OS min{1, ®'(s)} ds, z2(t,x) = Z(u(t,x)).



Corollary 2.5. We have that

' 2 1B~ [* 2
/ / |Vz|* < / U(ug) + T/ / u(t, z)* da dt. (2.6)
0 BR BR 0 BR

Proof. Notice |Vz| < |9'(u)||Vu| = |[V®(u)|. O

Lemma 2.6 (Estimates on u; and V®(u)). Assume E -z = 0 on 0Br, u € L>(0,T; L*(Bg)), ®(u) €
LQ(O, T; HI(BR)), (D(Uo) € Hl(BR) then

®(u) € L*>(0,T; H'(Bg)) and u; € L*((0,T) x Bg).

We also have, for z(t,z) = Z(u(t,z)) that

/OT/BR|zt|2sc</ 9B (o) + / / )|Vl B
+/BR u(o)vq>(u0)-E+/BR |u(T)2E|2>.

Proof. Again we we will use the notation w = ®(u). When w is smooth, we can take w, as a test
function and integrate in Br. Notice that w; = ®'(u)us, SO

/ ‘I)/(U)|Ut|2=/ thwt—i—/ wV - (uF)
Br Br Br

Since Vw = 0 on dBg, then also Vw, = 0. We can integrate by parts to recover

d
/ @’(u)|ut|2:——/ \Vw\2+/ wtuE-i—/ uVuw, - E.
Br dt Jp, 8Br |z Br

Using assumption (2.1) the second term on the right-hand side vanishes. Integrating in [0,T] we

have
//BR u)|ug]? + /BRVw(T)|2=/ IVw(0) //BRth

Integrating by parts in time the last integral

/ /BR ) |ug|* + /BR|Vw(T)2=/BRVw(0)2+/OT/BRuti,E

+/ u(0)Vw(0) - E — w(T)Vw(T) - E.
Br Br

(2.7)

Notice that u; Vw = &' (u)2u,®' (u)= Vu. Applying Young's inequality, we deduce

/ /B @l + 5 /BRW“’(T)'QS /BRIW / / w)|Vul’ B

(2.8)
2 2
+/BR u(o)Vw(O)-E+/BR [u(T)]"|EI.

From the estimates above, we know that ¢;|Vu| < &' (u)|Vu| = |V®(u)| € L?. Similarly, the result
follows. Finally, we use that
|2e|* < 12" (w)Plue® < 1P (ur)||ue|*.

using that Z/ = min{1, ®'}. O



2.1 Free energy and its dissipation when £ = VV

When E = VV we have, again, a variational interpretation of the equation that leads to additional
a priori estimates. We can rewrite equation (Ps, r) as

O - (@) u+uv) =V (u {‘b’ff‘)w n vv}) —V wV{ew V)  (29)
where
O(s) = /1 ?da. (2.10)

Remark 2.7. Since ¢; < ®/(p) < ¢, then ©(p) ~ alnp 50 O~1(p) ~ e 7. In particular ©(0) = +oo.
This is why we have to integrate from 1 in this setting. However, when ®(s) = s™ then O(s) =
o (sm7h—1). S0 07 !(s) = (1 — =) =1, For @ elliptic then ©~1 : R — [0, +00). However, for the

FDE passing to the limit we are restricted to s < .

1-m

Formulation (2.9) shows that this equation is the 2-Wasserstein gradient flow of the free energy

u(z)
Folu] = /B (/1 O(s)ds + V(;z:)u(x)) dz.

Along the solutions of (P g) it is easy to check that

GFeb01=— [ uvew +v)ar <o @1

Also, by integrating in time we have that
T
0< / / w|V(O(u) + V)|? dz = Falue] — Folu(t)] (2.12)
0 Br

Finally, let us take a look at the stationary states. For any H € R, the solution of ©(u) + V = —H is
a stationary state. Since © : [0, +oc0) — R is non-decreasing, we have that H = —0(u(0)). We finally
define

wy =07 (= (H +V)).
Remark 2.8. When & is elliptic uy g < ©~}(—H). In the case of the FDE we have

wyig = 1+ 52 (H A+ V)™ = py i
where h = H 4 . When h > 0 and py 4, is bounded, but py is not bounded.

2.2 Comparison principle and L' contraction

Let us present a class of solutions which have a comparison principle, and are therefore unique.
Definition 2.9. We define strong L! solutions of (P4 ) as distributional solutions such that

1. u € C([0,T); L*(Bgr)).

2. ®(u) € LY0,T; WHY(BR)) , A®(u) € LY((0,T) x Bg).

3. uy € L*(0,T; L' (BR)).
Theorem 2.10. Assume E - n(z) = 0. Let u,u be two strong L solutions of (Ps r). Then, we have that

[ o -a) < [ fuo) - o),
Br Br

In particular |u(t) — u(t)|| L1y < ||w(0) —u(0)||11(5,) and, for each ug € L*(Bg), there exists at most
one strong L! solution.



Proof. We now that w = ®(u) — ®(u). Let j be convex and denote p = j'. We have, using the no flux

condition
/ / (u—w)ep(w / / w)V - {Vw + (u —u)E}
BR BR
/ / w)|Vw|? + / / (u —T)Vp(w)E.
Br Br
Notice that Vu = @,}U)V<I>(u) € L'((0,T) x Bg) due to (2.2). Using that E - n(x) = 0 on 9B we have

/ /BRu—utp / /BR Viu—-u)E+ (u—u)V-E).

Then, as p — sign,, we have p(w) — signj (w) = signd (v — @) and

Using again that E - n(x) = 0 on 9Bg, we recover a 0 on the right hand side. This completes the
proof. O

Remark 2.11 (Uniform continuity in time). Because of the L! contraction, and the properties of the
semigroup |[u(t + h) —u(t)||zr < ||u(h) —u(0)]| 1. If u(h) — u(0) in L, we have uniform continuity in
time w(h) = ||lu(h) — u(0)]|z1.

Remark 2.12 (On the assumption E - z = 0 on dBg). Notice that to recover the L? estimates in
Theorem 2.2 (which depend on |V - E|L~) we assume only that E - x > 0 on Bg. However, later
(asin Lemma 2.6 and Theorem 2.10) we require E -z = 0 on dBg. The estimates in these results do
notinclude V- E, and so it seems possible to extended the results to this setting by approximation.

3 The Aggregation-Fast Diffusion Equation

We start this section by providing a weaker notion of solution

Definition 3.1. We saythatp € L'((0,T) x By is aweak L! solution of (Pr)if p™ € L'(0,T; W1 (Bg))
and, for every o € L>(0,T; W2>°(Br) N W, *(Bg)) N C'([0,T]; L'(Br)) we have that

/ () - / t / p(e)gils)ds = - / t / ("o V) / gl0).

fora.e.t € (0,7).

If VV -n(z) = 0 we then have Vp™ - n = 0 and we can write the notion of very weak L* solution by
integrating once more in space the diffusion term

[ swser= [ [ srairas= [ [ wrae-pev-vors [ meo)

Theorem 3.2 (L' contraction for H! solutions bounded below). Assume that p, p are weak L* solutions
of (Pr) with initial data po and p,, p,p € H*((0,T) x Br), and p,p > co > 0. Then

/B (o) =70 < / (00 — 7o)+

Br
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Proof. Since the solutions arein H' and are bounded below, then p™, 5™ € H'((0,T) x Br). Letp be
non-decreasing and smooth. By approximation by regularised choices, let us define w = p™ — p™
and ¢ = p(w). Thus we deduce

/ot/BR(p(s)_p //BR w)[Vwl® + (p = p)Vp(w) - VV).

Proceeding as in Theorem 2.10 for ® smooth and using (1.8) we have that

//BR (5)]4)e ds < 0,

and this proves the result. O

We can now construct a semigroup of solutions. We begin by constructing solutions for regular
data, by passing to the limit in regularised problems with a sequence of smooth non-linearities
D,(s) = P(s) = s™. We consider the sequence @, of functions given by ®4(0) = 0 and

mk™ 1t s>k,
Dl (s) ~ {ms™ 1t se [k, (3.1
mkiT™ s < k71

up to a smoothing of the interphases. We define

s s<m T-m

Z(s) = /OS min{1,®' (o)} do = /OS min{1,me™ '} do = { X

Cm+s™ s>m T-m

Theorem 3.3 (Existence of solutions for regular initial data). AssumeV € W2>°(Bg), V >0, V(0) =
V -2 = 0 on OBg and the technical assumption (1.5). Let py be such that

0<£§p0§5_17 poeHl(BR).
Then, the sequence uy, of solutions for (Ps r) where ® = ®, given by (3.1) is such that
up — p weakly in H*((0,T) x Bg)
U — p a.e. in (0,T) x Bg
Op(ug) — p™  weakly in L*(0, T, H'(BRr))
and p is a weak L* solution of the problem. Moreover, we have that p > w(e) > 0,

lo@)llzr = llpollrs — llp()llze < eMAVIE=En | po| .

In fact, p is the unique weak L' solution which is H* and bounded below.

Proof. First, we point out that that ®4(p) € W1 (Bg). Hence, for the approximation, by (2.4),

ur, € L°°((0,T) x Bg) and, due to (2.5), ®x(ux) € L*(0,T; H*(Bg)) with uniform norm bounds. This

ensures (up a subsequence)

weak-x in L>((0,T) x Bg),

Oy (ur,) weakly in L?((0,T) x Bg),
V& (ug) = Vo weaklyin L?((0,T) x Bgr),

Z(ug(t, ) — Z* weakly in H*((0,T) x Bg),

Zy(ug(t,x)) = Z* a.e.in (0,7) x Bg.

U —

|
o

L

0
0

)

1

Let us characterise ¢ as ®(p). For k > m™*
hence we have

== we can compute clearly min{1, ®,} from (3.1) and

0 s €10,k],
m(k™t - ™Y s >k,

Zi(s) — Z'(s) = {

11



Since uy, are uniformly bounded in L®°, taking k large enough we have that
Zk(uk.) = Z(uk).

Thus Z(ug) converges pointwise to Z*. But Z is continuous and strictly increasing, so it is invertible.
Thus u, — Z71(Z*) a.e.in (0,T) x Bg. Since, if both exist, the weak L? and a.e. limits must coincide
(apply Banach-Saks theorem and Césaro mean arguments), then u;, — p a.e. in (0,7) x Bg. Finally,
due to the locally uniform convergence of ®;, — @, &, (ug) — ®(p) a.e. and hence ¢ = ¢(p).

We can now upgrade to strong convergence, using the uniform L*> bound |u;| < C. Hence, to-
gether with the point-wise convergence, we can apply the Dominated Convergence Theorem to
show that our chosen subsequence also satisfies u;, — pin L((0,T) x Bg), Vq € [1,0).

Let us show that we maintain an upper and positive lower bound. The upper bound is uniform
e IAVlie=@r) || pg || Lo (- Since as H — oo the stationary states ©, ' (V + H) tend to cero uniformly,
then we can choose H}, so that

po > O (V + Hy) > w(e).

Thus, u; > w(e) and, therefore, so is p. In fact, due to this lower bound

1

Vil = 7w@)

IVZ(ur)l,  [(ur)e] < (ur)]

_
Z'(w(e))

and so the convergence u;, — p is also weak in H! (up to a subsequence). But then p is the unique
weak L' solution with this property. Since the limit is unique, the whole sequence u; converges to
p all the senses above. O

Corollary 3.4 (Approximation of the free energy). Under the hypothesis of Theorem 3.3 we have that
Fo, [ur(t)] = Frlp(t)], fora.e. t>0.
and
T 2
/ / p|V (520" + V)| < Falpo] - Falp(T))
0 Br
In particular, Frlp(t)] is a non-increasing sequence.

Proof. Since u; — p converges a.e. in (0,T) x Bg, then for a.e. t > 0 we have that u(t) — p(¢). Since
uy is uniformly bounded, then the Dominated Convergence Theorem ensures the convergence of
Fao, [ur]-

Taking into account (2.12), then the sequence uéV(@(uk) + V) is uniformly in L2((0,7) x Bg).
Therefore, up to a subsequence, it has limit £(x). We can write

1 P’ 1 _1
u%V(@(uk) +V)= MVuk +ulVV =u, ? (VO (ur) + up VV).
up,

We know that V&, (u) + u,VV — Vp™ + pVV weakly in L2. On the other hand, since we know
ug, p > w(e) we can apply the intermediate value theorem to show that, up a to further subsequence,

T 1 . Tl T
[ ] ot =ottae= [ [ i@l - pPae <o [ [ ju-pPdo o
0 Br 0 4 Br 0 Br

where the strong convergence L? follows, up to a further subsequence, from the weak H! conver-
gence. Using the product of strong and weak convergence

uZV(O(uy) + V) — piv (72" + V),  weaklyin L'(0,T) x Bp).

But this limit must coincide with &, so the limit holds also weakly in L2. The weak lower-continuity
of the L? yields the result. O

12



We are also able to deduce from these energy estimates an L! bound of Vp™. Unlike (2.5) this
bound can use only local boundedness of VV.

Corollary 3.5. In the hypothesis of Theorem 3.3 we have that

T T %
/ / V0™ < llpollzasn) (fR[po]—fR[pmH / / pvvF>, VK CBr.  (32)
0 K 0 K

Proof. We therefore have that

T T T 2\ 2
[ fwemi= [ [ omvom i< [l ([ ofvomem ) a
0 K 0 K 0 K

Hence, we conclude the result using Corollary 3.4, Jensen’s inequality and the conservation of the
L' norm. O

Now we move to L! data. We first point out that L™ (Br) C L'(Bg) so any p € L! has finite Fz|p].
To be precise, by applying Hélder's inequality with p = L > 1 we have the estimate

/K o™ < K™l - (33)

Now we apply density in L! of the solutions with “good” initial data, via the comparison principle

Theorem 3.6 (Existence of solution for L! initial data). Under the assumptions of Theorem 3.3, there
exists a semigroup S(t) : Lt (Bgr) — L'(Bg) with the following properties

1. For 0 < et < py < e and py € HY(Bg), S(t)po is the unique weak L' solution constructed in
Theorem 3.3.

2. We have [|S(t)pollzr(5r) = lPollLr(5r)-

3. We have L' comparison principle and contraction

/B [S(t)p0 — SBp) < / [P0 — Pl /B 1S(t)po — S(t)7o| < / 160 — Pol.

Br Br
4. If po € L (Bg) is the limit of the solutions uy, of (Ps,g) with (3.1) and

o)l L1+ < CetllAVIlze looll Lr+e -

5. If po € L} (Bg) and (1.8), then p is a very weak L' solution.

6. If po € LY (Br), then Fr[p(t)] is non-increasing and we have (3.2). Hence, it is a weak L* solution.

Remark 3.7. Notice that there is no concentration in finite time. This is due the combination
of the L! contraction with the uniform L'*¢ estimate (2.4). By the L! contraction, the sequence
S(t) max{pg, k} is Cauchy in L* and hence it has a limit in L. No Dirac mass may appear in finite
time. In R™ we do not have an equivalent guarantee that S(t)po i, € L' (R™) for some approximating
sequence. We will, however, have this information in the space M(R"™).

Remark 3.8. Notice that the construction of S(¢) is unique, since for dense data it produces the
unique H'! solution bounded below (which also comes as the limit of the approximations), and
then it is extended into L' by uniform continuity.

13



Proof of Theorem 3.6. We start by defining S(¢)po = p for the solutions constructed in Theorem 3.3.
Let us construct the rest of the situations.

Step 1. 0 < € < pg < ! but not necessarily in H'. We regularise p, by any procedure such
that H'(Bg) > poe — po in L'*¢ and a.e.. Hence 0 < e < py, < ¢! for ¢ large enough. By using
stationary solutions and (2.4) we have that 0 < w(e) < p, < C(t). By the L! contraction, for all ¢ > 0,
S(t)po.¢ is a Cauchy sequence, and hence it has a unique L! limit. Let

S(t)po = L' —1im S(t)po.¢-

We have
/ |S(t)po.e — S(t)po| < / |po.e — pol, > Ly
Br Br
For this subsequence pj* converge to p™ a.e. and, up to a further subsequence, in L>-weak-, and
hence S(t)po is a weak L! solution.
Taking a different p, with the same properties, and p, , its corresponding approximation, again
for Zlarge, 0 < w(e) < p < C(t). Then we have that

/ |S()po,e — S(t)Po,el < / lpo.e = Poel, > Lo

Br Br

Let £ — +o0 we recover the L! contraction. Similarly for the comparison principle.
Step 2. po € L'. Approximation by solutions of Theorem 3.3. We define

PO, K = maX{P7 K}a PO, K.e = max{p, K} +e.

For the solutions constructed in Step 1. we have that px . \, px ase N\ 0and as K * +oco we have
pr /" p. By the L! contraction, we have as above that the sequence are Cauchy and hence we have
L' convergence at each stage. The contraction and comparison are proven as in Step 1.

Step 3. Item 4. Due to the L' bound, we know that u; — p* weakly in L'*¢((0,T) x Bg). On
the other hand, we can select adequate regularisations of the initial datum po, € H' such that
e < poe < e7!, and the corresponding solutions uy . of (Pe r) With ® = &, given by (3.1) satisfy the
L' contraction. Integrating in (0,7) we have that

T
/ / |, — ug,e] < T/ lpo — po.e
0 Br Br

As k — oo, by the lower semi-continuity of the norm

T
/ / lp* = S(t)po,| < T/ lpo — poel-
0 Br Br

As ¢ — oo we recover p* = S(t)po.

Step 4. po € L'. Solutions in the very weak sense. Finally, let us show that the solutions satisfy
the equation in the very weak sense. Since we can integrate by parts, px ¢ satisfies the very weak
formulation, and we can pass to the limit to show that so does pxk.

We have shown that px 7 pin L. With the same philosophy, we prove that px (t)  p(t) for every
t > 050 p(t) € L'(Bg) for a.e. and we can pass to the limit in the weak formulation. We only need
to the deal with the diffusion term. We also have that p7 * p™. Due to (3.3) and the Monotone
Convergence Theorem, we deduce that p™ € L'((0,T) x Bg).

Step 5. Conservation of mass. Since all the limits above hold in L!, then preservation of the L!
mass follows from the properties proved in Theorem 3.3.

Step 6. Decay of the free energy. Since all the limits above are taken monotonously and a.e., we

can pass to the limitin
[ o [ v
BR BR

by the Monotone Convergence Theorem. Hence, the decay of the free energy proven in Corol-
lary 3.4 extends to L solutions. We can also pass to the limitin (3.2). O
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4 An equation for the mass

The aim of this section is to develop a well-posedness theory for the mass equation (M). We will
show that the natural notion of solution in this setting is the notion of viscosity solution. We will
take advantage of the construction of the solution p of (Pr) as the limit of the regularised problems
(Ps,Rr).

4.1 Mass equation for the regularised problem

If E is radially symmetric and w is the solution solution of (Ps ), its mass function M satisfies

oM 9 0 oM oM 1 na
o = k(v) %(I) (81}) + I{(U)WE(U), k(v) = nwgv

by integrating the equation for u = 2. Notice that when E = VV then E = x(v)%¥. This change
of variables guarantees that

e

R v R,
f(t,x)dx:\aBl\/O ft,ryrmtdr = 5] n ; f(t,v)dvz/o f(t,v)dv,

Br
for radially symmetric functions.

Theorem 4.1 (Comparison principle for masses). Let M, and M, be two classical solutions of the mass
problem such that M, (0,r) < M>(0,r). Then M; < M.

Proof. For any A > 0, let us consider the continuous function
w(t,v) = e M (My(t,v) — Ma(t,v)).

Notice that w — 0 as either t — +oo or v — 0, 00. Assume, towards a contradiction that w reaches
positive values. Hence, it reaches a positive global maximum at some point ¢ty > 0 and vy € (0, 00).
At this maximum

ow 0

0=~ (to, v0) = e‘*tg(Ml — My) — Xe  M(My — My)
ow 0

0 = %(to,vo) = G_At%(Ml — MQ)
0*w o 02

0> w(tomo) —e tw(M1 — My).

At (to,v0), we simply write the contradictory result

d
0 < AeMw(tg,v0) = A(M; — Ma) = = (M, — My)

ot
= (nwi v )? {@’ <aév1{1> 8;)]\? n aé\flE}
~ (nwi o) {qﬂ (%\f) 8;%2 + agsz}
= (v )2 {@’ <a§fl) (8;)]‘? - a;i\?)} <. O
Let us define the Holder semi-norm for a € (0,1)
[flea(ap) = z,ysélﬁ,b] W
TH#Y

We have the following estimate
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Lemma 4.2 (Spatial regularity of the mass). If u(t,-) € LY(Bg) for some q € [1,0) then

MG s S Tl @1
If ¢ = oo the same holds in W>°(0, R,).
Proof. For v; > vy we have
~ ~ q—1 g—1
|M(t,v1) — M(t,va)| = /~ _ut,z)de < luf|pa| By, \ Bu,| @ = |lullpa(vr —v2) 7. O
Bvl\B“2

Lemma 4.3 (Temporal regularity of the mass). There exists a constant C > 0, independent of u or ®,

such that
T R, T
// |Mt|2dvdt<0</ \Il(uo)—l—HEH%oo/ / u(t,x)dedt) (4.2)
0 Jo Br 0 JBgr

In particular, if ug € L? and ¥ (uy) € L' then M € C=(0,T; L'(0, R,)).

Proof. Let us prove first an estimate for || M;(t,)||r2(0,r,). Since M = 2% then 22 = 0u Applying

Jensen'’s inequality
R,
/ / dx) dv
0 B,

2
V- (VO( )—l—uE)dx) dv

8M 2

at

(
NVAR

2
(/ )+uE)-dem) dv
9B, 2|

S/ /~ |V (u) + uE|* dS, do.
o JaB,

Making the change of variables v = |B;|r" we have |B,| = v = |By|r" = | B,| and

i

Due to (2.5) we recover (4.2). Finally

o]
-,
-

oM 2

o —(t,v)

dv</ / VB(u) + uB S, | Byl dr = [VB(u) + uB |25,
OB,

t2 9\

. ot —(s,v)ds

dv

| M(t1) — M(t2)|l L (0,r,) = /Rv |M (t2,v) — M(ty, )|dv_/0R“
<[ [

4.2 Aggregation-Fast Diffusion

S’U

de’U< |t2—t1|2

ot

L2((0,T)%x(0,R.)) '

We recall the definition of viscosity solution for the p-Laplace problem, which deals with the singular
(p € (1,2)) and degenerate (p > 2) cases. We recall the definition found in many texts (see, e.g., [31,
37] and the references therein).

Definition 4.4. For p > 1 a function w is a viscosity supersolution of —A,u = f(z,u, Vu) if, u # oo,
and for every ¢ € C?(Q2) such that u > ¢, u(zo) = ¢(x¢) and Ve(z) # 0 for all x # xz it holds that

lim sup (—App(x)) > f(xo,u(xo), V(o))
720 2B, (z0)\{zo}

Similarly, for our problem we define
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Definition 4.5. For m € (0, 1) a function w is a viscosity supersolution of (M) if, for every ¢y > 0, v €
%O,Rv) and for every ¢ € C%((to — &,to +¢) X (vo — &,v9 + €)) such that M > ¢, M(vy) = p(vy) and
52 (v) # 0 for all v # v it holds that

0 1 nol . 0 O\ ™ 1o} oV
S (to, v0) — (nwFu ™ )? [hm sup [(¢> ]‘*‘(p(to,vo)av(vo) > 0. (M)

r—0 0<|v—vo|<T v v v

The corresponding definition of subsolution is made by inverting the inequalities. A viscosity solu-
tion is a function that is a viscosity sub and supersolution.

Remark 4.6. Since we have a one dimensional problem, we can write the viscosity formulation
equivalently by multiplying by (%)1*’” everywhere, to write the problem in degenerate rather than
singular form.

Remark 4.7. Our functions M will be increasing in v. This allows to a simplification of the condition
in some cases. For example, if also have a lower bound on p, in the sense that

M (t,v9) — M(t,v1) > c(vy — v1), Yvg +€ > vy > v > vg —ewWheree >0

then we know that it suffices to take viscosity test functions ¢ such g—f > £. In particular, we can

simplify the definition of sub and super-solution by removing the limit and the supremum.

Remark 4.8. We can define the upper jet as

T* T M (tg,v) = {(D@(toavo)aDQSO(tOWO))
cp € C?*((ty — e, tg +¢€) x (vg — &,v0 +¢)),
M(t,0) = (t,v) <0 = M(to, vo) — lto, vo) }.

The elements of the upper jet are usually denoted by (p, X). The lower jet 7%~ is constructed by
changing the inequality above. The definition of viscosity subsolution (resp. super-) can be written
in terms of the upper jet (resp. lower).

Theorem 4.9 (Existence from the semigroup theory for p). Let pg € L*(Bg). Then
M(t0) = [ SW)lpl(o) do
B,

is a viscosity solution of (M)with M (t,0) = 0and M (t, R,) = ||pol|.1(B,). Furthermore, for any vy, vy, T >
0, M € C([0,T] x [v1, v2]) with @ modulus of continuity that depends only on n,m,v1,va, T, || 5% || 1o (01,02
and the modulus of continuity of M,, in [v1,vs] . Moreover, we have the following interior regularity
estimate: forany Ty > 0 and 0 < v; < ve < R, there exists v > 0 and o € (0,1) depending only on
n,m, ||%||Lo®(vl7v2), vy, vo, 11, Such that

[e3

m—1
—_— 1
m—+41 —_—
— m—+41
L'(BRr) |ty — 12

|v1 — va| + lpo

|M(ty,v1) — M(t2,v2)| <y , (4.3)

min{or, R, — va} + lpoll iy, 77
forall (t;,v;) € [Ty, +00) X [v1,v2].
Proof. Step 1. e < po <! and H'(Bg). Let us show that

My, = M, uniformly in [0,T] x Bg.

M, is a viscosity solution of (M) and A, is a weak local solution in the sense of Appendix A.

By our construction of p by regularised problems in Theorem 3.3, the strong L? convergence of uy
to p ensures that

T T
/ sup [ Mo, (t,0) — M, (t,v)|dt < / / lun (£, ) — p(t, )| da dt — 0.
0 veE[0,Ry)] 0 n
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So we know M,, — M, in L*(0,T; L>(0, R,)), and hence (up a to a subsequence) a.e.
Through estimates (4.1), (4.2) , and Theorem B.1 we have

‘Muk(tl,vl)—Muk(tQ,UQN SO(&)(‘Ul—’Uﬂa—FH—SP), t,SG [O,T],’Ul,vg S [€,RU—E]. (44)

To check that M, is a viscosity solution, we select v, € (0, R,). Taking a suitable interval (¢, R, —¢) >
vo, by the Ascoli-Arzela theorem, a further subsequence is uniformly convergent. Since we have
characterised the a.e. limit we have

||Muk - MP”LOO([O,T]X[E,RU—E]) — 0.

Due to the uniform convergence, we can pass to the limit in the sense of viscosity solutions and M,
is a viscosity solution at x.

The argument is classical and goes as follows (see [23]). Take a viscosity test function ¢ touching
M, from above at z,. Then, due to the uniform convergence M,, to M, in a neighbourhood of z,
there exists points z; where ¢ touches M,,, from above. We apply the definition of viscosity solution
for M, atxz, and pass to the limit.

Due to the pointwise convergence, M, also satisfies (4.4).
Step 2. py € L*. We pick the approximating sequence

po.ce = max{po, K} + .

As we did in Theorem 3.6 the L' limit of the corresponding solutions is S(t)pe. Furthermore, the
limits e \, 0 and K * +occ are taking monotonically in p, so also monotically in M. This guarantees
monotone convergence in M. With the universal upper bound 1 we have L' convergence.

Since the C* bound is uniform away from 0, we know that M maintains it and is continuous. Due
to Dini's theorem the convergence is uniform over [0,T] x [e, R, — €], and M, is a viscosity solution
of the problem.

The value M(t,0) = 0 is given by S(t)po € L*(Bgr) and the value at M (t, R,) = ag g by the fact that
1S pollLr(Br) = llpollLr(Br) = @o,r- The uniform continuity is a direct application of Corollary A.3.
We point out that, since p, € L'(Bg), then M, is point-wise continuous, and therefore uniformly
continuous over compact sets. Estimate (4.3) follows from Theorem A.1. O

Let us now state a comparison principle, under simplifying hypothesis.

Theorem 4.10 (Comparison principle of viscosity solutions if p is bounded below). Let M and M be
uniformly continuous sub and supersolution. Assume, furthermore, that there exists Cy > 0 such that

M(ﬁ,vg)—M(t,Ul) ECO(UQ—Ul), V’UQ 21)1.

Then, the solutions are ordered, i.e. M < M.

Proof. Assume, towards a contradiction that

sup  (M(t,v) — M(t,v)) =0 > 0.
t>0,0€[0,R,]

Since both functions are continuous, there exists (t1, v1) such that M (t1,v1)— M (t1,v1) > 3Z. Clearly,
t1,v1 > 0. Let us take X positive such that

g

Ae T
S 1606+ 1)

With this choice, we have that

g
20t < Z

For this ¢ and X fixed, let us construct the variable-doubling function defined as

=Pt

@(t,s,v,f) :M(tvv) 7M(Sa£) 22

A(s +1).
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This function is continuous and bounded above, so it achieves a maximum at some point. Let us
name this maximum depending on ¢, but not on A by

3
@(ts,sg,vs,sg) Z @(tl,tl,vl,vl) > ZO— — 2)\t1 > %

In particular, it holds that

M (teyve) = M(52,€2) > (e, 52,0, 6) > o (4.5)
Step 1. Variables collapse. As &(¢., s., v, &) > ©(0,0,0,0), we have
[ve — &I + |se — t| 7
z = z + A(se +te) < M(te,v.) — M(se, &) — ©(0,0,0,0) < C.
Therefore, we obtain
‘7)6 - ge‘ + |t6 - 56| < Ce.
This implies that, as ¢ — 0, the variable doubling collapses to a single point.
We can improve the first estimate using that ®(¢., s., v, &) > P(te, te, v, v:). This gives us
v — &P+ se —t P — 7
v —&| 82| - d < M(te,ve) — M(se,&c) + Ate — sc)
S M(tsv Us) - M(SE, gs) + Cé‘.
Since M is uniformly continuous, we have that
2 12
Tt S (4.6)
e—0 12

Step 2. For ¢ > 0 sufficiently small, the points are interior. We show that there exists x such
thatt.,s. > p > 0fore > 0 small enough. For this, since M and M are uniformly continuous we can
estimate as

= < M(tmvs) (5&55)

M(t.,v.) — M(0,v.) + M(0,v.) — M(0,v.) + M(0,v.) — M(te,v.) + M(t.,ve) — M(se, &)
w( ) +w(lve — &l + [te — sel),

where w > 0 is a modulus of continuity (the minimum of the moduli of continuity of M and M), i.e.
a continuous non-decreasing function such that lim,_,o w(r) = 0. For € > 0 such that

o
W(lve =&l + [te — sc]) < 1

we have w(t.) > ¢. The reasoning is analogous for s.. For v. we can proceed much in the same

manner

< M(tm Us) - M(Ssa ES)

M(tt‘vv&) - (t!:‘v O) + M(tE,O) (tsave) + Z\/[(tEa UE) M(357£€)
< w(va) + W(‘UE - fa‘ + |ta - 58|)

19

And analogously for &.. A similar argument holds for R, —v. and R, — &..

Step 3. Choosing viscosity test functions. Unlike in the case of first order equations, there is no
simple choice of ¢ that works in the viscosity formula. We have to take a detailed look at the jet
sets. Due to [23, Theorem 3.2] applied to u; = M, us = —M and

[0 — &7 +[s —t?
52

pe(t,s,0,8) =

+A(s+1)
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for any § > 0, there exists X and X in the corresponding jets such that

<a?2,02) (), > € T2 Mt v.), (—8?52) (2), —X> € T M(se, &),

where z. = (., s¢, ve, &) and we have

(4 AT < (X ) < A+5A2

-X

where A = D?p.(z). In particular, this implies that the term of second spatial derivatives satisfies
X5 < X (see [23]). Notice that

3(,0 B 2(te — se) % B 2(te — se¢)
ot ( ) - 82 + )‘7 - s (ZE) - 52 - A
and 5 2 ) 5
Py 2\e—se) 9%
%(25) - e2 ag (zf'?)

Since M (t.,v) — ®(t., s, v,&) as a maximum at v = £, we have that, for v > v,

v — £E|2 — |ve — fa|2

£2

> M(tfa U) - M(t87UE) > CO('U - UE)'

Therefore, we conclude
20 —&) S o

2

Plugging everything back into the notion of viscosity sub and super-solution

2(t€;ss)+/\+H(Us,2(v€;&),X> <0
£ £

Q(igSE)—A—&-H(ﬁa, 2(ve 55) > >0

where

ES n—1

ov
H(0p. ) = (ot 0" {3 455 0

Step 4. A contradiction. Substracting these two equations

0<2)\§H(§5,(£5) X> H(vmggg)X)

(58, 2(ve &))) (56’ 2(ve Ee) X)

I (557 <v2—€>X) H (UE, 2<vE;€>X>

(e 208 ) (o, 26 )

L 20— &) [ ant OV 1V
— (nwﬁ)z% (v? " %('Us) *53 " 8’0(58)) — 0,

since v?"% &Y (v) = 19 is Lipschitz continuous and (4.6). O
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5 Existence of concentrating solutions
When we now take F : (0,00) — (0, 00)

pr@) = (B2FWV@E)) 77, 0<F <1, F0)=0, (5.1)
we have that pr > py, so the corresponding solutions with p(0,z) = pr(x) satisfies
p(t,x) > py(x), vVt >0,z € Bpg.

We will prove that with this initial data we have U = 2 > 0 by showing it satisfies a PDE with a

comparison principle and U(0, -) > 0. First, we prove an auxiliary result for the regularised problem.

Theorem 5.1 (Solutions of (Pg g) with increasing mass). Let h € R, F be such that 0 < F' < 1,

F(0) =0,
uy =971 (h - F(V(:c))), (5.2)
u be the solution of (Pe r) and M be its mass. Then, we have that
M(t+ h,z) > M(t,x), Vh >0 (5.3)
and
M(t,ve) — M(t,v1) > /~ 07 (h-V(2))da, Yoy < vs. (5.4)
vy \Buy

Proof. Notice alsothat F(s) < ssoug(z) > ©~!(h—V(z)),and thisis a stationary solution. Hence this
inequality holds for u(t) as well, due to Theorem 2.10. Thus (5.4) holds. Since u € C*((0,T); C(BRr)),
we can consider

8u 8M
Dueto(2.3),U € C((0,T) x [ »]). Since we have M(t,0) =0, M(¢t, R,) = 1the boundary conditions

are U(t,0) = U(t, R,) = 0. Using the equation for the mass we have that

U(t,0) = (nwnv%)Quog (©(ug) +V) >0,
v

since V/0v > 0, by hypothesis. Taking formally a time derivative in the equation of the mass, we
obtain that

ou _ w1 (0 (o OMY  OM VY sy (O (o, DU\ UV
or — (nenv )<au <(I) (u)8v8t>+8tav av>("“’"” )(81) (‘I) (“)au)+au av)

827[] + (U) aiU
ov? ov

where A(v) = (nw,v™= )2® (1) > 0 and B(v) = (nwnvnT_l)Z(%[fp’(u)} + 2Y). This can be justified in

the weak local sense. For ¢ € C°((0,T) x (0, R,)) we can write

(9M oV
// M // v (nwnv // (nwnv v av%

we can simply take ¢ = W Y and integrating by parts in time to recover

o Jo ot ar mun v (o )\ 500 o0

Since uwis C! then 2 (@ (v)) = ®'(v)2Y is a continuous function. Operating with the derivatives of
1, we recover that

[ ol 2 (awdl) + o mwm =0 wecz.n x 0.R)
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We now show that U is a solution in the weak sense, incorporating the boundary conditions. Since
U is continuous and U(¢,0) = U(t, R,) = 0, for any ¢ suitably regular we can use an approximating
sequence ¢ € C((0,T) x (0, R,)) to show that

/OR” U(T)(T) dv + /OT /ORU U {‘?;f + % (A(u)gf) + % (B(v)w)} _ /OR” U(0)4(0) do.

Fix ¥, smooth and let ¥ the solution of

o _ 9 (A(v)aq’> + 2 (Bw)w) in(0,T) % (0, Ry)

ot v v ) o -
W(t,0) = W(0, Ry) =0, 5:2)
\I’(O,U) = \IIQ.

If ¥ is a classical interior solution, then taking as a test function (¢, z) = ¥(T — ¢, z) we have that

R, Ry
/ U(T) W dv = / U(0)%(T) do.
0 0

Notice that A(0) = 0. Substituting A by the uniformly elliptic diffusion A(v) +§, § > 0, and letting
5\, 0, for any ¥y > 0, we can construct a non-negative solution of (5.5). Therefore, since U(0) > 0
we have that U > 0in (0,7) x (0, R,), and the proof is complete. O

Now we move to considering suitable initial data for (Pg). Let us pick b1,b2 > 0, D(b1,b2) € [0,1]
and

o) = {D(bl,bz)lmpv(x) IV (2) € b1, b, (5.62)
pv(z) otherwise.

This solution corresponds to pr taking

D(bl,bz)s if s € [bl,b2]7
F =
(5) {5 otherwise.

Notice that pp € L'*¢(Bg) due to the assumption (1.5). We select by, b, and D(by, by) so that

do.n = / oo = / pv + Dby, by) / pv.  (5.6b)
Bpr {IGBRZV(I)Q[bl,bQ]} {ZGBR:V(I)G[bl,bQ]}

If 0 < by < by <supg, V then we can solve

~(1-m)
ao,R — Jrg, Vi A pv
D(b1,by) = ( JaeBav iy ) <1, (5.7)
f{z:V(z)G[bl,bQ]} pv
since fBR pv < ag gr. Itis easy to see that, since V is radially non-decreasing,
/ pp < (aOR — aVR) +/ PV, Vr e [O,R]. (5.8)
B, B,

The construction is quite elaborate, but the idea is sketched in Figure 1.

Theorem 5.2 (Solutions of (Pg) with increasing mass). Under the hypothesis of Theorem 3.3, let pp be
given by (5.6). Then, the mass M of p(t) = S(t)po constructed in Theorem 3.6 is such that

M(t,v) / (ao,r — av,r) + M, (v) uniformly in [e, R,).

In particular, p(t,-) = (ao,r — av,r)do + pv weak-x in the sense of measures.
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Some p  when d =3,m = 0.3, R, = 3 and WNz) = 15|;E|2

—

100 -

075 |

= 050

025 Mf’v
—(1- ”’V,R) + M,,v

— M,

0 1 2 3

100

75 |

50 |

v

=r — FV) with b, = 3 and b, = 5

00 &

0 1 2 3

Figure 1: Example of pp for some parameters b; and b. In this example ap g = 1.

Proof of Theorem 5.2. Step 1. Properties by approximation. Since pp € L'*¢, looking at how
we constructed S(t)po in Theorems 3.3 and 3.6, it can approximated by Sy (t)po where S, is the
semigroup of (Pg r) with @, given by (3.1). Notice that, the associated ©,, given by (2.10) is

Or(s) = 2 (1 - smfl) , forse k1K)

1-m

Hence, we recover

@;1(8) _ (1 _ ﬂs)*ﬁ7 fors e [@k(k_l)v@k(kﬂ'

m

Taking h = -~ in (5.2) we have initial data ug ; such that

1-m

1

U | = (L-F(V)) 1T=m, whenever F(V(x)) € [@k(kfl),@k(k)],

1-m

and M, non-decreasing in t. This corresponds to an interval of the form v € [y, R, — d;]. Let us
denote uy = Sk (t)uo . Due to the L' contraction we have that

[ o) = Su@polde < [ funk - polds,
BR BR

Hence, by Theorem 3.6 we infer that Sy (t)uo r — S(t)pp in L*(Bg) for a.e. t > 0. This guarantees the
a.e. convergence of the masses. Hence, the mass function M, which is already a viscosity solution of
(M) and C* regular, also inherits the point-wise estimate from M, in(5.4). M is also non-decreasing
in ¢t and v. Moreover, due to (5.8) and Theorem 4.9 due to Equation (4.3), we conclude that

M, (v) < M(t,v) < (ao,r — av,r) + M,y (v). (5.9)

Step 2. Uniform convergence of 1/ (¢, ) ast — +oo. Since M is point-wise non-decreasing in t and
bounded above by ag r, we know there exists a function M, such that

M(t,x) /N My (), t 1 oo. (5.10)
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By the estimate (4.3) we know that M, belongs to C.((0, R,)) and hence continuous in interior
points. On the other hand, (5.9) implies

M, (v) < Moo (v) < (ao,r — av,r) + M, (v).

Hence, by the sandwich theorem, M. (R,) = ao r and it is continuous at R, (due to the explicit
formulas we can actually show rates). Since M, is non-decreasing and M., > 0, due to (5.10), there
exists a limit

lim My (v) < ag,r — av,R-
v—0

Defining M, (0) = lim, o M (v), the function is obviously continuous in [0, R,]. Hence, applying
Dini's theorem, we know that
sup |M(t,v) — M (v)| — 0.
v€E[e,Ry]

Due to (5.4) and our choice of h, we have that

Moo (v2) — Moo (v1) > (v2 —w1) _inf  py, Yo, < vs. (5.11)
By, \ By,

Step 3. Characterisation of M, as a viscosity solution. Let us check that M, is a viscosity
solution of

0. (5.12)

Mo 1 (Mo v

Ov v
Due to our lower bound (5.11), 3%{70 is bounded below. We define the sequence of masses M, :
[0,1] x [0, R,] — R given by M, (¢t,v) = M(t — n,v). These are viscosity solutions for (M) due to
Theorem 4.9. We also know that

Ov? m

sup | M., (t,v) — Moo (v)| — 0.
(t,v)€[0,1] X [e,Ry]

By standard arguments of stability of viscosity solutions, M, is also a solution of (M). Since it does
not depend on ¢, we can select spatial viscosity test functions, and hence it is a solution of (5.12).
Since we have removed the time dependency, we dropped also the spatial weight (nw, v+ )2.
Step 4. M. is C?((0, R,)).

Step 4a. Lipschitz regularity Since M, is non-decreasing, at the point of contact of a viscosity
test function touching from below, we deduce

0% () = - (%) TV s

o2 m \ v o

Hence, M, is a viscosity super-solution of —AM = 0. Due to [30], we have that M is also a dis-
tributional super-solution of —AM = 0. Distributional super-solutions are concave. Since M, is
concave, itis Wh>°([e, R, —¢]) of all e > 0.

Step 4b. Higher regularity by bootstrap. Now we can treat the right-hand side as a datum

2—m
F= L <5M°° (v0)> OV (e Ry — o).

m ov ov

Applying the regularisation results in [12] we recover that M, € C1%(2¢, R, —2¢). Since V € W2 =
C%1, then f € C%P(2¢, R, — 2¢) for some 3 > 0, SO M, € C%P(4¢, R, — 4¢).

Step 5. Explicit formula of M. Since M., € C?((0,R,)) N C([0, R,]), we can integrate (5.12) to
show that
My (v) = Moo (0) + M,

PV +h

for some h > 0. Since Mo (R,) — Moo(0) = ap,r — M (0) < ay then, for some h > 0 we have that
My (Ry)—Moo(0) = ay 4 . By the comparison principle, which holds due to (5.11), we conclude the
equality M (v) = M (0) = M, ., (v) forv € [0, R,]. Due to (5.11), the singularity at 0 is incompatible

with A > 0. Thus h = 0. O

24



Remark 5.3. Notice that the aggregation does not occur in finite time, since we assume (1.5).

Proof of Theorem 1.1. To compute the liminf, it suffices to pick a pp such that pg > pp. We pick
by = supp, V. Since py > py we know that

/ po(z)da > / pv(xz)de = / pp(z)dz, Vr such that V(rep) < by.
B B, B

T

Now we choose b; such that the inequality holds also when V' (re;) > b;. Since py € L>(Bgr \ B;,)
then we have

/ po(x) dz > ao n — |Bllpolli~smp, ), Vr € 11, R]
B,

For each choice of b; we recover that
_1

/ pp(x)de < ag.r — |Br|D(b1,b2)” T-m BiI{f oV, Vr such that V(rey) > by
B R

” "

We have to pick b, large enough so that V(r1e;) > b; and so that

—(1—-m
||p0|L°°(BR\Br1)> ( )

D(b1,b2) < :
(1 2) ( lnfBR\BTPV

This is possible since (5.7) implies that D(b1,b2) — 0 as by ™ by for V strictly increasing.
If we assume (1.11), by the comparison of masses we have

/ p(t,x)dz < (ao,r — av,r) + M,, (v), Vr € [0, R].
B,
Then, the lim inf and lim sup coincide with this upper bound, i.e.
lim p(t,x)dz = (ao,r — av,r) + My, (v), Vr € [0, R].
t—4o00 B,

To check the convergence in Wasserstein distance, we must write the convergence of the masses
in L' in radial coordinates. Let yioo r = (ao.r — av.r)do + pv, then we have that

"L dr.

R
d (p(t), too, ) = N5 /

/ p(t,x) dx — fioo, R(Br)
B,

due to the fact that the optimal transport between radial densities is radial and the characterisation
of d; in one dimension (see [46]). Since we have shown in the proof above that fB,, p(t) dz < oo (By)

(). 1) = nis, | ’ (MOO,R<BT> -/ olt. ) dx) s,

Due to the monotone convergence fBT p(t,x) / oo, r(By) for r € (0, R], the right-hand goes to 0 as
t — +oo. O

6 Minimisation of 7

It is very easy to see that the free energy Fg is bounded below, in particular

1 m
Frlp) = =125 BRI 1T (5,): (6.1)

due to (3.3) and that V' > 0. Therefore, there exists a minimising sequence. The problem is that
the functional setting does not offer sufficient compactness to guarantee its minimiser is in L' (Bg).
However, we can define its extension to the set of measures as

ﬁz[u]=—ﬁ/3 p + ; Vdp
R R
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This is the unique extension of Fx to M, (Bg) that is lower-semicontinuous in the weak-x topology
(see [25] and related results in [11]).

Since we work on a bounded domain, tightness of measures is not a limitation. For convenience,
let us define for p € L'(Bg),

Emrlpl = 75 ; p(z)™ da.

Let us denote the set of non-negative measures of fixed total mass min By as
Pw(Br) = {1 € M1(Bg) : p(Br) = m}.
We have the following result

Theorem 6.1 (Characterisation of the unique minimiser of Fz). Let us fix m > 0, V€ W**(Bg),
V(0) = 0 and V is radially increasing. Then, any sequence p; minimising Fr over Py (Br) N L'(Bg)
converges weakly-x in the sense of measures to

) ~Jevin for h such that ay ., = m,
oo.m (m — aV,R)éo + pv I'fav,R <m.
Furthermore, s N
Frlttoo,m] = inf  Fgrlu] = _inf Frlpl. (6.2)
Hepm(BR) pEPm(BR)ﬁLl(BR)

Remark 6.2 (Lieb’s trick). Given a radially decreasing p > 0, p? € L'(Bg) for some ¢ > 0 (for any
R < o0), using and old trick of Lieb’s (see [34, 35]) we get, for |z| < R,

R || ||
/ pldx = nwn/ p(r)ir"=tdr > nwn/ p(r)ar" =t dr > nwnp(x)q/ "y
Br 0 0 0

Hence, we deduce the point-wise estimate

ola) < ( Jo, 7" ) (6.3)

n
nwy, |x|

Itis easy to see that (6.3) is not sharp. However, it is useful to prove tightness for sets of probability
measures. Similarly, if additionally Vp € L'(Bg), and V > 0 we can estimate

/ Vopdr = nw,
Br 0

so we recover the point-wise estimate

| ||

||
V(r)p(r)yr"tdr > nwn/ V(r)p(r)r" ™t dr > nwap(z) vyt dr,
0 0

fBR Vip

fBlI‘ v (6.4)

p(z) <

Proof of Theorem 6.1. The second equality in (6.2) is due to the weak-x density of L (By) in the space

of non-negative measures, and the construction of Fr (see [25]). Let us consider a minimising
sequence. Let us show that we can replace it by a radially-decreasing minimising sequence. Let
p; € LY (Bgr) with |p,||,» = m. By standard rearrangement results

gm,R[p;] = gm,R[pj] .

Since V > 0 and radially symmetric and non-decreasing then

V(z)i (@) de < [ V(w)p()da.
Br Br
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Hence, there exists minimising sequence p; € L'(Bg) that we can assume radially non-increasing.
Since p; € Pm(Br), by Prokhorov's theorem, this minimising sequence must have a weak-x limit in

the sense of measures, denoted by oo m-
We use the following upper and lower bounds that follow from (3.3)

/ Vpj < Frlp;] + ﬁ/ pT" < Frlps] + 125 Brl " lp5ll 11
Br Br

Due to (6.4) we have a uniform bound in L>°(Bgr \ B.) for any ¢ > 0. Thus, there exists p., €

LY (Br) N L>(Bg \ Be) for any ¢ > 0 such that
oo = (1= llpoc 2151 )80 + Poc-

Let us now characterise this measure. For ¢ € C°(R™) we take

0@ = (90~ [ eWre)ay) pro)
For ¢ fixed, there is ¢y > 0 such that for ¢ < e¢, pioo,m + €90 € P (R™) and, hence,
Frlpoo) = Frlttoom] < Fr [toom + 9]

Hence, we get the expression

Em,R [Poo + W] — Em Rpoc] + s/B V(x)y(z)dz > 0.

We write

5m,R [poo + Eib] — gm,R[Poo] _ m 1 (/ |p(x) + t5¢($)‘m72(/’(x) + t51/)($))¢(55) dx> dt.
0 Br

€ m—1

Since we have the estimate

] [ o) + t20@) 7 2(00) + 00 o

IN

we recover by the Dominated Convergence Theorem

lim gm,R [poo + 51/1] - gm,R[pOC] _ m ,Ogé_ll/k

£550 £ m—1Jp,

Thus, as ¢ — 0 the following inequality holds

m

7pm*1 + V.
m—1

/ Ipso]ty >0,  with I[p]:=
Br

(lpooll e +olltpll o)™ Il Lon,

(6.5)

Applying the same reasoning for — (which corresponds to taking —¢ instead of ), we deduce the

reversed inequality, and hence the equality to 0. This means that

o[ lpl(@)p(@pc() - / R ( / ) dy) Ipoc) () oo (@) d

_ /B I[poc] (@) () poc () dz — /B

= /BR (@) poo () <I[poo](x) = /BR I[poo] (1) pos (1) dy> A

As ¢ concentrates to a point, we recover for a.e. z either

Poo() =0 or I[poo](x)Z/B 1[poo] () poo (y) dy =: Cpoc]-
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Notice that the right hand of the second term is a constant. Since p.. is radially decreasing then
there exists R, > 0 such that

1

poo() = (TW—C[POOD)_l_m ] < Rec,

0 Ry < |z| < R.

Since Fz[mdo] = 0 then p. = 0 is not the minimiser, we recover that R, > 0 and hence, evaluating
near 0 we have that h = —C[ps] > 0.

Let us now prove that R, = R. Due to the definition of 7, we deduce

1 1
Clp) = Frlpo) + —— . = inf Frlpl + 7/ -
[poc] rlp] m—1Jp, Poc pELY(BR)NPwm (BR) el m—1Jp, Pee

Therefore, we infer that C[pw] = C(Rw) Where

C(r) = inf Frlp] + ! /OT (1 — vy - C(T))> o L dr,

pELY(BR)NPwm (Br) m—1 m

Taking a derivative with respect to R and applying Leibniz's rule

iy m [ (S0 - 0) Tt L (o o)

dr dr m-—1 m
and hence
@ (e ) T
0 (Lem ] (52 (V) - C(r) T tar)
Finally, we conclude that
1 - 1 l-m, =
Falpel = Closd) + 1 [ o=l [ (S5 o))
1 1—m TTw
= C[Ro] + i - (m(V - C[Roo]))

As we increase R, the total value decreases, and hence since we are minimising, we have R., = R.
Therefore po, = py 1 for some h > 0.

Let us finally show the relation between m and k. Due to the construction of F, forany 0 < a; < a,
we have that

inf  Fglpl= inf Fgr[p]< inf Fllaz—a1)do+pl = inf Fgrlp
pEL}F HEM 4 pEL}F peL1+
lpll,1=as lll s =az llpllp1=a1 llpllL1=a

Since, as h increases, py 4, decreases, so does ay i r = ||pvinllL(y). Hence, for m fixed we min-
imise Fr with the smallest possible h. Since h > 0, when m > ay,r we have a Dirac Delta at the
origin, with the difference of the masses m — ay g. O

Remark 6.3 (md, is not a minimiser). Let p € Li(BR) smooth be fixed and let us consider the
dilations p,(z) = s"p(sz) for s > 1. Notice that p, — &y as s — +oo in the weak-x of M(Bg). As
s — 0o We can compute

sn(m—l)

Frlps) = /BR p(x)™ dx + . V(s z)p(z)dz — 0+ V(0) / p(z)dz = 0.

m—1 Br

It is not difficult see that Fx takes negative values, so this is not a minimiser.
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In [14] the authors prove that in R™ if pyip, < po < pvin, then p(t) — pyin of the same initial
mass. This shows that u.m = py+s IS attractive in the cases without Dirac Delta concentration at
the origin.

We have constructed initial data py > py suchthat p(t) — peo,m in the sense of their mass functions.
Furthermore, we show that

Lemma 6.4 (Minimisation of Fg through solution of (Pg)). Assume py < po, (1.11), ay.r < apr =
llpollL1(BR) and let p be constructed in Theorem 1.1. Then

Frlp(®)] N« Frlttoo.ao.n] = Frlov]:

Proof. From the gradient flow structure we know F[p(¢)] is non-increasing. First, we prove L!(Bg \
B.) for some ¢ small. We know that p(t) > py so

L =vl= [ (ol0) = p) = M R) - M)~ Ot (R) - My (9))
Br\B: Br\B:

= (a07R — CLV,R) + Mv(€) — M(t,&) — 0
ast — oo due to Theorem 1.1. Now we can explicitly compute

1
— (p(®)™ — pv/)
1-— m BR\BE v

/ V(plt) — pv)
Br\B-:

1 / m m
— p(t)™ —p
s R COREYY

+ (s V@) U + vl + (sw vio)) [ 0=l

zEB, rEBR

| oo )

e

/ V(p(t) - pv)
B,

+

71000 - vl < |2

+ +

< B (lpONn + llevIizn) +

Due to the L' convergence, we can extract a sequence t;, — oo such that p(tx) — pv a.e. in Br \ B..
For this subsequence, due to Fatou's lemma and p(t) > py we have

/ p(tr)™ — Py
BR\BE BR\BE

Collecting the above estimates, we conclude that

lim sup | Flp(te)] = Flov]l < | Bl T eI + llovlITh) + (s:}; V(sc)) (el +lloviz)
—00 x <

for any e > 0. Letting ¢ — 0 we recover that limsup,, is actually a limg, and it is equal to 0. Since
Flp(¥)] is non-increasing, we recover the limit as ¢ — co. O

7 The problem in R"

We start by showing the existence of a viscosity solution of the mass equation (M), by letting R —
+00. As R — oo we can modify Vg only on (R — 1) < |z| < R to have VVg(z) -z = 0 for |z| = R.
Fix po € L*(R™) radially symmetric. Let My be the solution of the mass equation with this data.
Consider the extension

Mpg(t,v) v < Ry,

lpollL(Br) v > Ry,

Mg (t,v) = {

where, as above, we denote R, = R"|B;|. Since ||MR|\L00((O,OO)X(O7OC)) we have that, up to a subse-
quence
Mpg, — M weak-x in L>((0,00)?).

29



We can carry the estimate in C([Ty, T»] x [v1, v2]) givenin (4.3), which is uniformin Rsince || Mg||r~ <
1,forany0< T} < Ty <occand 0 < vy < vy < Ry.

Now we show M is a viscosity solution. Due to the uniform continuity provided by Theorem 4.9
and the Ascoli-Arzela theorem, for any K = [0,T] X [v1,v2] With v1,v9,T > 0, we have a further
subsequence that converges in C(K) to some function M the uniform continuity. It is easy to char-
acterise M = M almost everywhere. Due to the uniform convergence, we preserve the value of
M(0,v) = Mg(0,v) for v < R,. Applying the same stability arguments for viscosity solutions as in
Theorem 4.9, M is a viscosity solution of the mass equation (M).

Proposition 7.1. AssumeV € Wf(;fo (R™) is radially symmetric, strictly increasing, V>0, V(0) = 0 and
the technical assumption (1.5). Let po € L*(R™) be radially symmetric such that ||po||z = 1. Then, there
exists M € Cioc([0, +00] x (0,400)) a viscosity solution of (M) in (0,00) x (0, 00) that satisfies the initial
condition
M(0,v) = /~ po(z) dz.
B

v

We also have the C*

loc

interior regularity estimate (4.3) with R, = co.

Notice that, at this point, we do not check that M (¢,0) = 0, and hence concentration in finite time
may, in principle, happen in R™. We also do not show, at this point, that M(¢,00) = 1. There could,
in principle, be loss of mass at infinity.

Remark 7.2 (Conservation of total mass if m € (2=2,1)). For this we use the following comparison.
We consider u,, the solution of the pure-diffusion equation

u, = Ady(u) t >0,z € Bgp,
Opu =0 t>0,x € 0Bgr
u(0,2) = uo(a).

Then the associated mass satisfies the equation

%:(nwévngl)Q%@k (%]\j) t>0,0€(0,Ry),
M(t,0) =0, t>0
M(taRv) = ||u0||L1(BR) t>0.

oM, _

If up > 0'is radially decreasing, then so is 5’= = u. Therefore, in the viscosity sense

oM Laa, [0 OMY\ OM OV
— < n n R P — .
ot = (wiv) {8v¢k<8v>+8v 81}}

Let u be the solution of (P, g). Due to Theorem 4.9 we have that

M(t,v)g/é u(t, ) dz.

v

Recalling the limit through @, given by (3.1) and the limit R — oo, the mass constructed in Proposi-
tion 7.1 we have the estimate

/~ w(t,x)de < M(t,v) < 1.
B,

where wu is the solution of v, = Au™ in R®. When m € (”7*2,1) we know that fRn u(t,z)dx =
Jgn uo(z) dz and, hence M(t, c0) = 1.

7.1 At least infinite-time concentration of the mass

Let assume ay < 1 and that py is such that there exists F with the following properties

lprllLr@ny =1 and Myp <My, < (1—av)+ M,,. (7.1)

30



Remark 7.3. For example, this covers the class of initial
‘ MPV < MPO < (1 - (lv) +Mpv
* [z, po(x)dz = (1 —av) + [5, pv(z)dz forv > v
* M,, is Lipschitzin (vy — e, v + €).

In this setting, we can take a suitable initial datum pp as in the case of balls, and we are reduced to a
problem in [0, vo], since the upper and lower bound guarantee that M (t,v) = (1—ay)+ [5 pv(z)dz
for all v > vg. This is a Dirichlet boundary condition for the mass.

When pg = pr then the associated mass M obtained in Proposition 7.1 satisfies

1. M is a viscosity solution of the mass equation and locally C*

2. M(0,v) = [ pr(z)dz

3. M is non-decreasing in t and z (due to the properties of the approximations).
4

. We have the comparison
M,y (v) < My, (v) < M(t,0) < (1 - ay) + My, (v).
In particular M(t,00) = 1 for all ¢ finite.
Again, there exists a point-wise limit
My (v) = tlg(r)lo M(t,v).

As in Theorem 5.2, M, preserves the C} . estimates, using Dini's theorem we can prove uniform
convergence in intervals [e,e7!]. Thus M, is a viscosity solution of (5.12). Due to the sandwich
theorem and monotonicity

My (07) <1 —ay, Moo (4+00) = 1.

It is easy to characterise M, as we have done in the case of balls.

This proves Corollary 1.3 under hypothesis (7.1).
Remark 7.4 (Convergence of pg as R — oo). Since we do not have any L bound for p for ¢ > 1, we
do not have any suitable compactness. We can extend pg(t) by 0 outside Bg and we do know that

PR ()| mrny < 1. 1f we assume that (7.2) and that V(z) > c|z|* for ¢, > 0. The properties can be
inhereted to pr so

/ 2] < C(1+ Flpo)).
Br

For pp in a suitable integrability class, we have tightness, and hence a weakly convergent subse-
guence such that
PR — I weak — * in L*(0, co; M(R™))

We also know that p% is uniformly integrable. However, since we cannot assure p% — (jq.)™, we
cannot characterise p as a solution of (P). This remark is still valid for radial initial data.
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7.2 Minimisation of the free energy

Following the arguments in [5, 13, 20], we have an existence and characterisation result for the
minimiser. In R™ the free-energy of the FDE u; = Au™ with 0 < m < 1, is not bounded below, and
u(t) = 0 as t — oo. In fact, the mass of solutions escapes through cc in finite time if m < =2, We
need to ask further assumptions on V so that the formal critical points py 5, are in fact minimisers.

We show below that it suffices that V is not critical in the sense of constants, i.e.

inf (1/ P+ (1 — 6)/ V(z)p(x) dx) > —00, for some e > 0. (7.2)

pEPac(R?) \'m — 1

We provide an example of V where this property holds below. As in Bg, we define an extension of
F to the space of measure as

]:[/L] = Em[,uac} + /]Rd V(I) du(x)

where p,. is the absolutely continuous part of the measure p.. Notice that, since we choose V(0) = 0,
we have that F[mdy + p] = Flp].

Proposition 7.5. Assume V > 0 and V(0) = 0 and (7.2). Then, we have the following:

1. There exists a constant C > 0 such that
/ P +/ Vp < CQO+ Flp)).
n ]Rd

If, furthermore V is radially symmetric and non-decreasing then
2. There exists u, € P(R™) such that

Fluse] = inf Flu] = inf Flp). 7.3
ool = b T = @By T 3

3. We have that
_ ) Pvin ifayin=1,
o (1—av)5o+pv ifay <1,

Proof of Proposition 7.5. Due to the lower bound, we have that

m
- < 1-— .
T—m Rnp <C+(1-¢) Ran
On the other hand, we get
Vo=Flo+ 7 [ m <Pl e Cr -9 [ v
Rn 1—-m n R™
Thus
5/ Vp < Flp]+C
Finally, we recover
m (1—¢)
- m < .
o SO S (Flel 1 0)

This completes the proof of Item 1.
Clearly, we have that



Hence, the infimum of F is finite. As in the proof of Theorem 6.1, we can consider a minimising
sequence p;. As in Theorem 6.1 we may assume that p; are radially symmetric and non-increasing.

Let us prove Item 2. As in Theorem 6.1, the second equality of (7.3) is due to the weak-x density
of L*(R™) in the set of measures and the construction of F. For our minimising sequence we know
hence that

/ Py =1, / < C(1+ Flpj]) < C.

Using Lieb's trick in Remark 6.2, we obtain that p; < C'min{|z|~",|z|~"/™}. Integrating outside of
any ball Bg, we can estimate

/ p; <C </ pm el dr) < cRr"(1=%).
R"”\Bgr R

Since m < 1, this is a tight sequence of measures. By Prokhorov's theorem, there exists a weakly-x
convergent subsequence in the sense of measures. Let its limit be u.

For the proof of Item 3, we proceed as in Theorem 6.1. Notice that we still have the estimate

Jpn VP
pj(x) < -
’ fB\z\ v

Since V is strictly increasing, this is an L (R" \ B,) of any x > 0, and we can repeat the argument
in Bg. O]

Let us illustrate the previous theorem by giving sufficient conditions on V satisfying the main as-
sumption of Proposition 7.5. We extend the argument in [15] to show a family of potentials V' for
which (7.2) holds.

Theorem 7.6. Assume that, for some o € (0, m) we have that
Xv =3 2"V (2) T < oo (7.4)
j=1
Then, (7.2) holds for any e € (0,1).

Remark 7.7. If the function » — V(r)~ =7 " is non-increasing, then the integral criterion for series
and the change of variable show that the condition becomes

ey

o) o0 o
/ WY (2Y)  Tom dy = / V(r) =mr"tdr ~ / py de < oo.
1 2 |z|>2

We are requesting that p»~° € L' for some § € (0,m). This is only slightly more restrictive than
simply that py gives a finite quantity in either term of F.

Proof of Theorem 7.6. We look first at the integral on B;. Due to Hélder's inequality, we have that

1 m |Bl|l_m "
LB )
m—1 B m—1 B

On the other hand, since V,p > 0 we know that fBl Vpdz > 0. Hence, we only need to care about
the integration on R™ \ B;. We define, forj > 1

b= p(a) da.
B,yj\Byj—1

First, we point out that

Ly, V@) dr= SV,

j=1
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Due to Jensen’s inequality

P < |B2j \BQJ'71| 7/ p(z) dz = |32j \ng71|1_mp'
/;21' \B2J‘71 ‘B2J \ B2J 1| 2] \BQJ 1 !
= G 2ina=m) .

Notice that By; \ Byi-1 = 27(B; \ By). Hence

>, C,,2in(1=m) .
P Y e V(2T e
fo " = X Sy i
Applying the triple Holder inequality with exponents p = (1 —m)~t,¢ = a™t,r = (m — o)~ we
recover
1-m el m—ao
(o) 1 o0 o0
OnQJn i
L ey D> V(@ >
/]R"\Bl Ve = =
< xv el ( / V(z)p(x) dx)
Rn\Bl
Lastly, using Young's inequality we have, for any ¢ > 0
/ " <e(l—m) / V(@)p(e) de + Cle, aym)x ™ ol {775
R"\ B R™\ By
Therefore
1 | B! " O, m) (1mmyest(m—a)est
— m (1 — Vp > - g
woi Lo aea [ e B (] A N a1
This completes the proof. O

Remark 7.8 (The power-type case V(z) = C|z|* for |z| > Ro). In this setting, (7.4) becomes m > =

(equivalently = 1, ™) <)), and in this case can take any a such that "U=") < o < . This condition
is sharp. Let us see that, otherwise, F is not bounded below. We recall the following computation,
which can be found in [15, Theorem 15] following the reasoning in [17, Theorem 4.3].

Assume m < We can construct densities p where the energy attains —co. Let

n+)\
Y

, where p; = =sc———+

Z |321+1 \32 ‘XBQJH\BZJ Pj S 2P

where 3 > 0 is a constant we will choose later, and j, is such that 27c > R,. We can explicitly
compute
2n+k -1 Z(j?ijo Q_j(ﬂ_A)

A _

J=J

This is a finite number whenever 5 > X. On the other hand
Z] %2 j(mB—n(1-m))
0
(Ejoijn 2_j6>

[ patorde = )

This number is infinite if m3 < n(1 —m). Hence,

1—
——/ ”de+/ Clz|*pg(2) doe = —o0, VCeRand)\<B<M.
m
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The case of the equality m = % is, as usual, more delicate due to the scaling. However, we still

prove that
i7£1rf1L1 (/ P JrC’/ |x|)‘p> = —00, vC e R.
pPe n n

As in the proof of [20, Proposition 4], we can take the following functions:

—1
pr(z) = Dk|x|_("+’\)XBk\BRO, where Dy = (/ ||~ () dx) .
B

k\BR,

Itis a direct computation that

Do le*pk:/ Im\’"dw=%/ i
Dy Rn Bi\Br, D;ﬁ)\ Rn K

For any a;, > 0, we have that the rescaling pi(z) = o} pr () is such that

_n4A L nia

A A n

n |T|” Pk n |T” Pk n k 2

gi= Jpn 12| = Jn 1] = (/ || dx) = <|8Bl|logRO> — 0.
s\ n s\ 7 Bi\Br

(fRn pk+>\> (fRn kar)\) k\ fro

For any sequence by, which is yet to be determined, we can pick a; so that [, ﬁ,;‘% = b, by taking

_ntA
ar =b, *" . Then, passing to the notation m = we recover that

_n_
n+A’

1—m

1 1 _ i
—/ P+ C | Jal P = —by + Carb = bt (b, ™ = Cay) = b ",
n R"L

_1-m . . .
if pick the sequence by, so thatb, ™ — Cay = b, . Notice that the function g, ,(s) = s* — s is strictly
_1-m
increasing near 0 if a < b. Hence, for k large enough and ¢ > =™, we can solve Ca, = b, ™ —b.°,
and we recover b, — 400 as k — co. Hence, taking ¢ € (<=2, 1), and k — oo, we prove the result.

1
’m

Remark 7.9. With the sequence p; above, we can also prove that

: Jen 120
lnf Rﬂ—n“

pEPNLL (fRn pn"ﬁ) "

This corresponds to the borderline case of the Carlson type inequalities
n(l—m) n(l—m)

1- Am ) #
</ p) </ |9:|>\p> = Cnam </ pm) , VT_T_)\ <m < 1and p>0.

which are known with the explicit constant (see, e.g., [20, Lemma 5]).

=0. (7.5)

7.3 Infinite-time concentration if V is quadratic at 0

Our aim in this section is to compare the solutions of (P) with the solutions of the pure-aggregation
problem
o _
ot
where V is a different potential. The equation for the mass can be written in radial coordinates as

V- (pVV), (7.6)

oM  OM OV

o0 o o (7.7
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We will show that infinite-time aggregation happens for (7.6) if and only if

~ -1
/ (%ﬁ(s)) ds = +oo. (7.8)
0+
Clearly, a sufficient condition that % < Cr near 0. This is the so-called Osgood condition used to
distinguish infinite from finite time blow-up in aggregation equations [8].

Proposition 7.10. Assume V e C2(R™), is radially symmetric, V (0) = 0, %(r) > 0 forr >0, (7.8) and
let My be a continuous, non-decreasing and bounded function. Then

1. There exists a unique classical solution by characteristics M(t,r) of (7.7) defined for all t,r > 0.

2. We have M (t,0) = 0 for all t > 0, i.e. there is no concentration in finite time.

Proof of Proposition 7.10. Equation (7.7) is a first order linear PDE that we can solve by characteris-
tics. We can look at the characteristic curves of constant mass M (¢,7.(t,79)) = M(0, 7). Taking a

derivative we recover 9= (t) = —%—‘Z(rc(t)). These are the same characteristics obtained when apply-
ing the method directly to (7.6). Clearly r.(t,79) < ro. Since V € C?(R"™), these characteristics exists
for some time t¢(rg) > 0, and are unique up to that time. Hence, let

~ -1
o oV
t= — (s ds. (7.9)
-/Tc(tﬂ’o) <ar ( )>

Concentration will occur if r.(¢,79) = 0 for some ry > 0 and ¢ < oo, which is incompatible with (7.8).
Notice that since 0 < r.(t,r9) < ro, these functions are defined for all ¢ > 0. Let us check that r.(¢, r)
do not cross, and hence can be used as characteristics. If two of them cross at time ¢, we have that

re(tro) [ 917 -t re(tr) [ oy -t
/ <&(8)> ds:—t:/ﬁ (31"(8) ds.

Since r.(t,rg) = r.(t,r1) then we get

/T: (?j(s)) h ds = 0.

As %—‘Z > 0 outside 0, then r;, = r, and the characteristics are the same. Due to the regularity of V,
there is continuous dependence and, since the characteristics point inwards and do not cross, they
fill the space [0, +00) x [0, +00).

Finally, notice also that %(0) = 0 and positive otherwise, then for any r, > 0 we have that
limy_s oo 7c(t,70) = 0. Since V is C?, then we have 9V /dr(0) = 0 50 r.(t,0) = 0, i.e. M(t,0) = 0. O

Proposition 7.11. Let p be a solution by characteristics of the aggregation equation (7.6), and let ro(t, )
the foot of the characteristic through (t,r). Then

0 n-1 v (r _ . dpo, OV
L =(2) plro) 2 00 (AT () + AT (o) + o) 22 ) W ) ). (7.10)
or r ov dr or
()
In particular, if p is a decreasing solution and V e C2(R™) with AV (0) = 0, then
AT 41920V 0 i supp po. (7.11)
dr or
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Remark 7.12. For V(r) = r2 then AV is constant, and we only have the last term, so all solu-
tions with decreasing initial datum are decreasing. If AV is non-increasing, then in (7.10) we have
—AV(r) + AV(ro) < 0 and all solutions are decreasing. This is the case for V() = 7 with
A € (0,2]. When V(r) = y* with A > 2, let us show that decreasing solutions of (7.6) are not
L'(R™). Hence, any decreasing integrable initial data produces a solution that losses monotonicity.
Indeed, if V(r) = r* then AV = (n+ A —2)r*~2 and integrating in (7.11) we recover p, > Cr~(+A=2)
which is not integrable for A > 2.

L. . . . . n—10
Proof of Proposition 7.11. Taking the derivative directly on M(t,r) = nw,r" '35, we recover that

ap 712 lfng — *12 1-n 9
o —(t,r) = (nwy) o <r o (M(t,r))) = (nwy) o r o (Mo(ro(t,7)

or 1970 1d or G
_ . 1-n,n-1Y"0 -1 Po 0 or?
=r""rg aT(75a7“)f00(7”0)<_(”‘1)74 +(n—1rg 37+ po(ro)” d7( )57 87;0 )

Going back to (7.9) and taking a derivative in r, we deduce

g 9 (ro(t, 7))
or

Taking another derivative we have that

9ro L (ro(t,r)) (0°V oV
or? (t,7) = 3 (87"2 (ro) = or? (T>> '

B (r)?

Joining this information and collecting terms we recover (7.10). Clearly, (7.11) and the convexity
of po guarantee that p(¢,-) is decreasing. Let us show that the condition holds in general. If p is
decreasing, then this value is not positive. For ry € supp po we therefore have

ydpo, OV

—AV(r) + AV (ro) + po(ro)~ 4 (70)5 - (r0) <0.

The support of pg is a ball. Fixing a value a value of r € supp po we have that

or) 0 ) OV

—AV(re(t, ) + AV(r) + p o (1)

<0.

Letting ¢ — oo, since r.(t,r) — 0, AV is continuous and AV (0) = 0, we recover (7.11). This com-
pletes the proof. O

Now we have the tools to show that concentration does not happen in finite time if 2% < C,r close
to 0. We construct a super-solution using the pure-aggregation equation.

Proof of Theorem 1.4. Take
Jan po(@) d

Polz) = PO(CL’)W Bry,

and
Vir)=—"r-. (7.12)

Obtain NH as the solution by characteristics of (7.7) constructed in Proposition 7.10. Due the defini-
tion of V, we know that it satisfies the hypothesis of Proposition 7.11 and we have AV = nCy > 0.
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Thus, (7.10) shows that 5(t, ) is decreasing, and non-negative. Therefore, it holds that, in the vis-

cosity sense %—1‘3 >0and %ig > 0. Hence, still in the viscosity sense
OM ke [ (OB N OB OV ML e (90 0OV
ot " ov ov? v Ov | = ot " v v
_OM _gifov _9M (. = oV
“ot or o or Vo)

Since characteristics retract, supp %—? C Bg, so the last term is non-negative by the assumption,

because either %—? = 0 or Cyr — 2% < 0. Thus, using the comparison principle in By for R > Ry
given in Theorem 4.10 we have that Mz < M for allt > 0,v € [0, R,] Since M is constructed by
letting R — oo, we conclude M < M for t,v > 0. O

8 Final comments

1. Blow-up is usually associated in the literature to superlinear nonlinearities, both in reaction
diffusion or in Hamilton-Jacobi equations, cf. instance [42, 28] and its many references. Here
it is associated to sublinear diffusion, notice that (1.13) implies, at least, 0 < m < 1. This
might seem surprising but it is not, due to two facts. First, recall that 0 < m < 1 means
that the diffusion coefficient mu™~! is large when u is small, and small when « is large. This
translates into fast diffusion of the support but slow diffusion of level sets with high values
(see e.g. [22] for a thorough discussion). This explains why 6o may not be diffused for m small
(see [10]). Secondly, the confinement potential V' needs to be strong enough at the origin
to compensate the diffusion and produce a concentration. In Bg, this is translated in the
assumption fBR py < 1 (recall that, for V(z) = |z[*0, this implies 0 < m < 2=2¢ < 1). In R™ we
need to deal with the behaviour at infinity, as mentioned in the introduction.

2. Formation of a concentrated singularity in finite time is a clear possibility in this kind of prob-
lem. In this paper, we do not consider the case V ¢ W2 >°(R") (e.g. V(z) = |z|* with A < 2). So
long as %—‘g is continuous (e.g. A > 1), it makes sense to use the theory of viscosity solutions
of the mass equation (M). In principle, there could be concentration in finite time, even in
(Pgr). Notice that, in our results, the estimate for p(t) € L9(Bg) depends on [|AV|| e (py). FOr
more general V, better estimates for p are needed in order to pass the limits ®,(s) — s™ and

R — oco. Some of these issues will be studied elsewhere.

3. For pg € LY (Bg), Sr(t)po is constructed extending the semigroup through a density argument.
We do not know whether it is the limit of the solutions w, of (Ps g) with (3.1). Furthermore,
this question can be extended to initial data so that Fr[po] < cc.

4. Non-radial data. We provide a well-posedness theory in Bg when py > 0, but not in R™. In
Bgr, as mentioned in Remark 1.2, we can show concentration in some non-radial cases, but
the exact splitting of mass in the asymptotic distribution is still unknown. The asymptotic
behaviour in the non-radial case is completely open.

A Recalling some classical regularity results

The equation for the mass of the solution of u; = V - (V®(u) +uVV) is given by

OM _ (st [0 g (MY | 0V oM
ot Ov Ov v Ov |’

(Mg)

Let us prove local regularity of bounded solutions by applying the results in [26]. To match the

notation of [26], in this appendix we choose the notation z = v, u = M, and ag(z) = (nw=v™ = )2.
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We write the problem (Mg) as
ug = V - a(x, t,u, Du) + b(x, t, u, Du) (A.1)

where
a(x, Du) = ag(x)®(Du), b(x, Du) = —Dag(z)®(Du) + ag(x)DV - Du.

The standard hypothesis set in [26] are that for some p > 1 we have

a(x,t,u, Du) - Du > Co|DulP — @q(t, x), (A7)
|a(z, t,u, Du)| < C1|DulP~" + @1 (t, x), (A2)
[b(z, Du)| < Co|DulP + ¢o(t, x). (A3)

We set &(s) = [s|™ lssop =m+ 1 € (1,2). We aim to recover local estimates on a set Q) € R".
We will be able to get local estimates outside 0. Hypothesis (A;) and (Ay) are easy to check with
Cy = infqag, C1 = supg ap , and g = p1 = 0. However, (A3) is initially not trivial. Since p € (1,2),
|DulP~! is not controlled by | Du|? but we have

|b(z, Du)| = (mg;zlx |Dag| + mgxa0|DV|)(1 + | Dul?),

so we choose Cy = maxq |Dag| + maxq ag| DV] and ps = maxq |Dag| + maxq ag| DV|]. Our functions
; are bounded, so we also have the hypothesis

P

wo, o ", w2 € LTT((0,T) x Q) (A4)

where LN
-+ —==1-K (AS)

r pq

are trivially satisfied. A weak solution in DiBenedetto’'s notation requires the regularity v €
Clo(0,T; L2 (Q)). The notion of sub-solution (resp. super-) of (A.1) is, for every K € € and

loc

0 <ty <ty <T,we have

/ up dz
K

for test functions 0 < ¢ € W,52(0,T; L*(K)) N LY,
have the following result

ta

to ta
+/ / (—upt + a(x, Du) - Dp)dzdr < (2)/ / b(x, Du)p dx dr,
y I JK t1 JK

(0,T; Wy P(K)). Let us denote Qp = (0,T) x Q. We

Theorem A.1 ([26] Chapter Ill, Theorem 1.1). Let p > 1, assume (A1), (Az), (A3), (Ay) and (As) and let u
be a local weak solution of (A.1). Then, there exists constants v > 1 and « € (0,1) depending only on the

p=1
constant of (A1)-(As), ||ull L=y, and [[po, 1" p2llLar o, Such that for all K € (0,T) x Q

p=2 1\ @
21— o] + lull % |1 — b
dist(K, T, p)

lu(ty, z1) — u(te, z2)| < yllullLe(@r)

where, forT = {(y,s) : s =0 ory € 9Q} we have

. . =2 1
aise(1.05p) = int (1o = o1+l Z = o )
(y,s)eT

Regularity at ¢ = 0. For the regularity att = 0, if po is only integrable, then M, is continuous. In
order to construct a modulus of continuity, we introduce the essential oscillation on a set K defined
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as essosck u = esssupy u — ess inf ¢ u. Notice that the previous result in the whole space stated that,
forany K € (0,00) x Q we have

[e3%

p—2
1+ Jlul %,
> (Qr)
iu(B, ) = < swr) | e o
wiu (K, h) ossose, u Yull oo wr) dist(K, T, p)
lo—y|<h
(t,2),(s:y)EK

h® — 0,

as h — 0. This in an interior modulus of continuity (with scaling). A similar estimate on the essential
oscillations holds near ¢ = 0, but the modulus of continuity now depends on the one from .

Theorem A.2 ([26] Chapter Ill, Proposition 11.1). Fixxzg € Qand T, > 0 and Ry > 05so that Bag,(xg) C
Q. Then, for k > 1, there exist sequences Ry, Ty \, 0 and &, — 0 depending only on the constant of (A;)-
(As), Ro and ||UHL°°([07T]><BQRO (z0)) such that

€ss 0SC u < max {6k; C essosc uo} . (A.2)
[0,Tk]x Br,, /2(x0) Br,, (z0)

As a consequence of the previous theorem we conclude that

h) = esss t — 0 < 3S OS
W (20, 1) %sgsts;lf\u( ,20) — u(0,20)| < o 55 98C

tends to 0 as h — 0. This modulus of continuity depends only on the constants of (A;)-(As) and
Wy (To, h) = €S80SC|5_g,|<p Uo- FOr any K compact, there exists wy,(K,h) such that wy,(xo,h) <
wu, (K, h), for all zy € K, also going to 0 as h — 0.

Corollary A.3. Let K € Q, and ug € C(K). Then, for any T > 0 and e > 0, there exists § > 0, depending
only on T\ ¢, the constants of (A1)-(As) and w,, (K, -), such that if (t,x), (s,y) € [0,T] x K, |t — s| < §? and
|z —y| < 6 then

lu(t, ) — u(s,y)] < e.

Proof. First, we point out that there exists w, (K, h) depending only on (A;)-(As) and w,,, (K, ) such
that wp (20, k) < wpu(K, ), forallzg € K. Fix T > 0 and e > 0. Since we want to use the interior
and boundary regularity, we first fix §; > 0 such that

0<t<é) = esssup|u(t,z) —u(0,z)| <
reK

Wl m

Due to the uniform continuity of u, there exists d, > 0 such that w,,(K,d,) < . Lastly, we take
h; > 0 such that w; ([0, 7] x K,h) < 5. We then take § = min{d;, ., h;}. Let us now check the
condition. We distinguish cases: If t,s > 0, then |u(t,z) — u(s,y)| < § <e.Ift < §; < s (or viceversa),
then we write

[u(t,z) — u(s, y)| < |u(t, z) — w(0,z)| + [u(0,z) — u(de, )| + |u(dt, x) — u(s,y)| < e.
Finally, if t, s < &, then we write
lu(t, z) — u(s,y)| < u(t, z) — w(0, )| + |u(0,z) — u(0,y)| + [u(0,y) — u(s, y)| <e.

This completes the proof. O

B Relating space and time regularities

Theorem B.1. Let I C Rand u € L>=(0,T;C*(I)) N C?(0,T; L' (I)). Then

aB
(z+1)

lu(t,x) —uls,y)| < Cllz —y|* + [t —s

where C depends only on the norms of w in the spaces above.
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Proof. We the following splitting |u(t, ) — u(s,y)| < |u(t,z) — u(s,y)| + |u(t,y) — u(s,y)|.- The bound
for the first term is evident and yields C|x — y|“. For the second term we write, for some h > 0

1 [yth 1 y+h
utoy) = ulsi) < |5 [ 0(t.n) ~uls ) ds| + |3 [ (e )~ utt. ) s
2h J, s 2h J, s
1 y+h
+ o /yh (u(s, z) —u(s,y))ds
1 yth o |t B S|B o
< —J|u(t) —u(s)||pr + C |z —y|*ds < C +h® .
2h i h

By choosing h = |t — 5|7, the optimal rate is achieved when f —y = ¢, i.e. v = QLH This choice yields

lult, y) — u(s,y)| < C|t — s|=71. =
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